INCH-POUND MIL-M-38510/327B 15 September 2003 SUPERSEDING MIL-M-38510/327A 10 December 1982 #### MILITARY SPECIFICATION # MICROCIRCUITS, DIGITAL, BIPOLAR, LOW-POWER SCHOTTKY TTL, COUNTERS, MONOLITHIC SILICON Inactive for new design after 18 April 1997. This specification is approved for use by all Departments and Agencies of the Department of Defense. ## 1. SCOPE - 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, binary and decade counters microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3). - 1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein. - 1.2.1 <u>Device types.</u> The device types should be as follows: | Device type | <u>Circuit</u> | |-------------|--| | 01 | Dual decade counter with A and B inputs | | 02 | Dual 4 bit binary counter | | 03 | Dual decade counter with clear and set-to-nine | - 1.2.2 Device class. The device class should be the product assurance level as defined in MIL-PRF-38535. - 1.2.3 Case outlines. The case outlines should be as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|------------------------------| | Α | GDFP5-F14 or CDFP6-F14 | 14 | Flat pack | | В | GDFP4-14 | 14 | Flat pack | | С | GDIP1-T14 or CDIP2-T14 | 14 | Dual-in-line | | D | GDFP1-F14 or CDFP2-F14 | 14 | Flat pack | | E | GDIP1-T16 or CDIP2-T16 | 16 | Dual-in-line | | F | GDFP2-F16 or CDFP3-F16 | 16 | Flat pack | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter. AMSC N/A DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ## 1.3 Absolute maximum ratings. | Supply voltage range | -0.5 V to 7.0 V | |---|---------------------------------| | Input voltage range | -1.5 V dc at -18 mA to 5.5 V dc | | Storage temperature range | | | Maximum power dissipation (P _D) 1/ | 143 mW dc | | Lead temperature (soldering, 10 seconds) | 300°C | | Thermal resistance, junction to case (θ_{JC}): | | | Cases A, B, C, D, E, F, and 2 | (See MIL-STD-1835) | | Junction temperature (T _J) <u>2</u> / | +175°C | | | | ## 1.4 Recommended operating conditions. | Supply voltage (V _{CC}) | | |---|-----------------| | Minimum high level input voltage (V _{IH}) | 2.0 V | | Maximum low level input voltage (V _{IL}) | 0.7 V | | Case operating temperature range (T _C) | -55°C to +125°C | | Normalized fanout (each output) | 10 maximum | | Width of input count pulse, t _{P(IN)} : | | | Input A, clock | 20 ns minimum | | Input B | | | Width of clear pulse | 20 ns minimum | | Input clock frequency (F _{MAX}): | | | Input A (Types 01, 02, 03) | 0 to 25 MHz | | Input B (Type 01) | 0 to 12.5 MHz | | Setup time (Types 01 and 02) | | | Clear inactive state setup time | | | (time for clear \downarrow to A or B input \downarrow) | 35 ns minimum | | | | ## 2. APPLICABLE DOCUMENTS ## 2.1 Government documents. 2.1.1 <u>Specifications and Standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation. ## **SPECIFICATION** #### DEPARTMENT OF DEFENSE MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for. ## **STANDARDS** ## DEPARTMENT OF DEFENSE MIL-STD-883 - Test Method Standard for Microelectronics. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines (Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) $[\]underline{1}$ / Must withstand the added P_D due to short-circuit test (e.g., I_{OS}). ^{2/} Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535. 2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. #### 3. REQUIREMENTS - 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4). - 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. - 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein. - 3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.3.2 Logic diagrams. The logic diagrams shall be specified on figure 2. - 3.3.3 Truth table. The truth table shall be as specified on figure 3. - 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request. - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3. - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6). - 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified. - 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III. - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535. - 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A). #### 4. VERIFICATION - 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein. - 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply: - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer. - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B. - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535. - 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4). - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows: - a. Tests shall be as specified in table II herein. - b. Subgroups 4, 5, and 6 shall be omitted. - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535. - 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows: - a. End-point electrical parameters shall be as specified in table II herein. - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power
dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein. - 4.5 <u>Methods of inspection.</u> Methods of inspection shall be specified and as follows: - 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal. TABLE I. <u>Electrical performance characteristics</u>. | Test | Symbol | Cor | Conditions | | Lin | nits | Unit | |--|-------------------|--|---------------------------------------|--------|------|------|------| | | | -55°C ≤ ⁻ | T _C ≤ +125°C | type | Min | Max | | | High level output voltage | V _{OH} | $V_{CC} = 4.5 \text{ V}, V_{IH} =$ | : 2.0 V, | All | 2.5 | | V | | | | $V_{IL} = 0.7 \text{ V}, I_{OH} =$ | -400 μΑ | | | | | | Low level output voltage | V_{OL} | $V_{CC} = 4.5 \text{ V}, V_{IL} =$ | 0.7 V, | All | | 0.4 | V | | | | $V_{IH} = 2.0 \text{ V}, I_{OL} = 100 \text{ V}$ | 4 mA | | | | | | Input clamp voltage | V_{IC} | $V_{CC} = 4.5 \text{ V}, I_{IN} =$ | -18 mA, | All | | -1.5 | V | | | | $T_C = +25^{\circ}C$ | | | | | | | High level input current at clear or set to 9 inputs | I _{IH1} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 2.7 V | All | | 20 | μΑ | | High level input current | I _{IH4} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 5.5 V | All | | 100 | μΑ | | at clear or set to 9 inputs | | | | | | | | | High level input current | I _{IH2} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 2.7 V | All | | 100 | μΑ | | at input A or clock | | | | | | | · | | High level input current | I _{IH5} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 5.5 V | 01, 03 | | 200 | μΑ | | at input A or clock | | | | 02 | | 400 | | | High level input current | I_{IH3} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 2.7 V | 01 | | 200 | μΑ | | at input B | | | | | | | | | High level input current | I _{IH6} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 5.5 V | 01 | | 400 | μΑ | | at input B | | | | | | | | | Low level input current | I _{IL1} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 0.4 V | 01, 02 | -120 | -400 | μΑ | | at clear or set to 9 inputs | | | | 03 | -135 | -400 | | | Low level input current | I _{IL2} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 0.4 V | All | 35 | -2.4 | mA | | at input A | | | | | | | | | Low level input current | I_{IL3} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 0.4 V | 01 | 60 | -3.2 | mA | | at input B | | | | | | | | | Short circuit output current | I _{OS} | $V_{CC} = 5.5 \text{ V} \frac{1}{}$ | | All | -15 | -100 | mA | | Supply current | I _{CC} | $V_{CC} = 5.5 \text{ V}, V_{IN} =$ | : 0 V | All | | 26 | mA | | Maximum input clock | F _{MAX1} | V _{CC} = 5.0 V, C _L = | 50 pF. | All | 25 | | MHz | | frequency, A or CLK | 100 001 | $R_L = 2 k\Omega$ | , | | | | | | Maximum input clock | F _{MAX2} | $V_{CC} = 5.0 \text{ V}, C_L =$ | 50 pF. | 01 | 12.5 | | MHz | | frequency, B | 10000 | $R_L = 2 k\Omega$ | , , , , , , , , , , , , , , , , , , , | | | | | | Propagation delay time, | t _{PLH1} | $V_{CC} = 5.0 \text{ V},$ | A to QC | 01 | 2 | 84 | ns | | low-to-high | | $C_L = 50 \text{ pF},$ | A to QA | 02 | 2 | 33 | 1 | | | | $R_L = 2 k\Omega$ | CLK to QA | 03 | 2 | 33 | 1 | | Propagation delay time, | t _{PHL1} | $V_{CC} = 5.0 \text{ V},$ | A to QC | 01 | 2 | 84 | ns | | high to low | | $C_L = 50 \text{ pF},$ | A to QA | 02 | 2 | 33 | 1 | | | | $R_L = 2 k\Omega$ | CLK to G | 03 | 2 | 33 | 1 | $[\]underline{1}/$ Not more than one output should be shorted at a time. TABLE I. <u>Electrical performance characteristics</u> - Continued. | Test | Symbol | Cond | itions | Device | Lin | nits | Unit | |-----------------------------|-------------------|--|--|--------|-----|------|------| | | | -55°C ≤ T _C | $-55^{\circ}C \le T_C \le +125^{\circ}C$ | | Min | Max | | | Propagation delay time, | t _{PLH2} | $V_{CC} = 5.0 \text{ V},$ | B to QD | 01 | 2 | 34 | ns | | low-to-high | | $C_L = 50 \text{ pF},$ | A to QD | 02 | 2 | 93 | | | | | $R_L = 2 k\Omega$ | CLK to QA | 03 | 2 | 77 | | | Propagation delay time, | t _{PHL2} | $V_{CC} = 5.0 \text{ V},$ | B to QD | 01 | 2 | 34 | ns | | high to low | | $C_L = 50 \text{ pF},$ | A to QD | 02 | 2 | 93 | | | | | $R_L = 2 k\Omega$ | CLK to QC | 03 | 2 | 77 | | | Propagation delay time, | t _{PHL3} | V _{CC} = 5.0 V | | All | 2 | 56 | ns | | high-to-low level, | | $C_L = 50 \text{ pF}, R_L = 2 \text{ I}$ | (Ω | | | | | | CLR to Q | | | | | | | | | Propagation delay time, | t _{PLH4} | $V_{CC} = 5.0 \text{ V}$ | | 03 | 2 | 57 | ns | | low to high level, set to 9 | | $C_L = 50 \text{ pF}, R_L = 2 \text{ I}$ | Ω | | | | | | to QA | | | | | | | | | Propagation delay time, | t _{PHL4} | $V_{CC} = 5.0 \text{ V}$ | | 03 | 2 | 53 | ns | | high to low level, set to 9 | | $C_L = 50 \text{ pF}, R_L = 2 \text{ I}$ | Ω | | | | | | to QB | | | | | | | | TABLE II. Electrical test requirements. | | Subgroups | (see table III) | |--|-----------------------------|--------------------------| | MIL-PRF-38535 | Class S | Class B | | test requirements | devices | devices | | Interim electrical parameters | 1 | 1 | | Final electrical test parameters | 1*, 2, 3, 7, 9,
10, 11 | 1*, 2, 3, 7, 9 | | Group A test requirements | 1, 2, 3, 7, 8,
9, 10, 11 | 1, 2, 3, 7,
9, 10, 11 | | Group B electrical test parameters when using the method 5005 QCI option | 1, 2, 3, 7, 8
9, 10, 11 | N/A | | Group C end-point electrical parameters | 1, 2, 3, 7, 8
9, 10, 11 | 1, 2, 3 | | Group D end-point electrical parameters | 1, 2, 3 | 1, 2, 3 | ^{*}PDA applies to subgroup 1. | | Terminal symbol | | | | | | |----------|-----------------|----------------|-----------------|----------------|-----------------|------------| | | Device | Device type 01 | | Device type 02 | | type 03 | | Terminal | Case | Case | Case | Case | Case | Case | | number | E, F | 2 | A, B, C, D | 2 | E, F | 2 | | 1 | 1A | NC | 1A | NC | 1CLK | NC | | 2 | 1CLR | 1A | 1CLR | 1A | 1CLR | 1CLK | | 3 | 1QA | 1CLR | 1QA | 1CLR | 1QA | 1CLR | | 4 | 1B | 1QA | 1QB | 1QA | 1 SET T0 9 | 1QA | | 5 | 1QB | 1B | 1QC | NC | 1QB | 1 SET T0 9 | | 6 | 1QC | NC | 1QD | 1QB | 1QC | NC | | 7 | 1QD | 1QB | GND | NC | 1QD | 1QB | | 8 | GND | 1QC | 2QD | 1QC | GND | 1QC | | 9 | 2QD | 1QD | 2QC | 1QD | 2QD | 1QD | | 10 | 2QC | GND | 2QB | GND | 2QC | GND | | 11 | 2QB | NC | 2QA | NC | 2QB | NC | | 12 | 2B | 2QD | 2CLR | 2QD | 2 SET TO 9 | 2QD | | 13 | 2QA | 2QC | 2A | 2QC | 2QA | 2QC | | 14 | 2CLR | 2QB | V _{cc} | 2QB | 2CLR | 2QB | | 15 | 2A | 2B | | NC | 2CLK | 2 SET TO 9 | | 16 | V_{CC} | NC | | 2QA | V _{CC} | NC | | 17 | | 2QA | | NC | | 2QA | | 18 | | 2CLR | | 2CLR | | 2CLR | | 19 | | 2A | | 2A | | 2CLK | | 20 | | Vcc | | Vcc | | Vcc | FIGURE 1. <u>Terminal connections</u>. # DEVICE TYPE 01 FIGURE 2. Logic diagrams (each counter). # DEVICE TYPE 02 FIGURE 2. Logic diagrams (each counter) - Continued. FIGURE 2. Logic diagrams (each counter) - Continued. # Device types 01 ## **EACH COUNTER** # BCD COUNT SEQUENCE (See Note A) | | OUTPUT | | | | | | |-------|--------|----|----|----|--|--| | COUNT | QD | QC | QB | QA | | | | 0 | L | L | L | L | | | | 1 | L | L | L | Н | | | | 2 | L | L | Η | Ш | | | | 3 | Ш | Ш | Ι | Ι | | | | 4 | L | Η | L | Ш | | | | 5 | L | Η | L | Η | | | | 6 | L | Η | Η | Ш | | | | 7 | L | Н | Н | Н | | | | 8 | Н | L | L | L | | | | 9 | Н | L | L | Н | | | # BI-QUINARY (5-2) (See Note B) OUTPUT COUNT QΑ QD QC QB 0 L Н 1 L Н L Н Н 3 L 4 L Н L L 5 Н L L L 6 Н L L Н 7 Н L Н L 8 Н L Н Н 9 Н Н L ## NOTES: - A. Output QA is connected to input B for BCD count.B. Output QD is connected to input A for bi-quinary count. # Device type 02 ## EACH COUNTER COUNT SEQUENCE | | OUTPUT | | | | | |-------|--------|---|----|----|--| | COUNT | QD | Q | QB | QA | | | 0 | L | L | L | L | | | 1 | L | L | L | Н | | | 2 | L | L | Н | L | | | 3 | L | L | Η | Н | | | 4 | L | Η | L | L | | | 5 | L | Η | L | Н | | | 6 | L | Н | Н | L | | | 7 | L | Η | Η | Н | | | 8 | Η | L | L | L | | | 9 | Η | L | L | Н | | | 10 | Н | L | Н | L | | | 11 | Η | L | Η | Н | | | 12 | Н | Н | L | L | | | 13 | Ι | Ι | L | Н | | | 14 | Н | Н | Н | L | | | 15 | Н | Н | Н | Н | | FIGURE 3. Truth tables. Device type 03 # BCD COUNT SEQUENCE (EACH COUNTER) | | OUTPUT | | | | | | | |-------|--------|-------------|---|---|--|--|--| | COUNT | QD | QD QC QB QA | | | | | | | 0 | Ш | L | Ш | L | | | | | 1 | L | L | L | Ι | | | | | 2 | Ш | L | Ι | L | | | | | 3 | Ш | L | Ι | Ι | | | | | 4 | L | Η | L | L | | | | | 5 | L | Н | L | Н | | | | | 6 | L | Η | Η | L | | | | | 7 | L | Н | Н | Н | | | | | 8 | Η | L | L | L | | | | | 9 | Η | L | L | Н | | | | ## CLEAR/SET TO 9 FUNCTION TABLE (EACH COUNTER) | INPUTS | | OUTPUTS | | | | |--------|----------|---------|----|----|----| | CLEAR | SET TO 9 | QA | QB | QC | QD | | Н | L | L | L | L | L | | L | Н | Н | L | L | Н | | L | L | COUNT | | | • | H = high level, L = low level FIGURE 3. <u>Truth tables</u> - Continued. **TEST CIRCUIT** ## NOTES: - 1. The pulse generator has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_r \le 15 \text{ ns}$, $t_f \le 6 \text{ ns}$, $t_p = .5 \mu \text{s}$, $PRR \le 1 \text{ MHz}$, $Zout \approx 50$, $t_{p(clear)} \ge 20 \text{ ns}$, $t_{p(clear)} \ge 35 \text{ ns}$ for device 02. - 2. All diodes are 1N3064 or equivalent. - 3. C_L includes probe and jig capacitance. - 4. Voltage values are with respect to ground teminal. - 5. F maximum: $t_r = t_f \le 6$ ns. CLEAR VOLTAGE WAVEFORMS TYPES 01 AND 02 FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02. COUNT VOLTAGE
WAVEFORMS, TYPE 01 FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02 - Continued. ## NOTES: - 1. The pulse generator has the following characteristics: V_{gen} = 3 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, t_p = .5 μ s, PRR \le 1 MHz, Zout \approx 50, $t_p(clear) \ge$ 20 ns. - 2. All diodes are 1N3064 or equivalent. - 3. C_L includes probe and jig capacitance. - 4. Voltage values are with respect to ground teminal. - 5. F maximum: $t_f = t_f \le 6$ ns. FIGURE 5. Switching time test circuit and waveforms for device types 03. COUNT VOLTAGE WAVEFORMS FIGURE 5. Switching time test circuit and waveforms for device types 03 - Continued. TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V: | | | Onit | | > | | | | = | | | | = | | - | | | | = | | | | | | | = | /9 | = | - | = | = | | μĄ | = | | | | | | = | - | | = | | mA | = | | | = | = | = | | - | | |--|----------|----------------------|----------|-----------------|-----------|---------|---------|---------|---------|---------|---------|----------|------|------|------|-------|------|------|------|----------|----------|--------|----------|----------|--------|-------|-------|-------|-------|-------|-------|--------|-----------------|-------|---------|-------|-------|-------|-------|---------|-------|-------|---------|------|-----|-----|-----|-----|-----|-----|------|------|---| | - | | Ω | Max | | | | | | | | | 0.4 | = | - | = | = | - | - | | -1.5 | = | - | = | = | = | /9 | | = | = | = | = | 20 | 100 | 200 | 20 | 100 | 200 | 100 | 200 | 400 | 100 | 200 | 400 | -100 | | - | - | - | - | | = 00 | 56 | | | | | Limits | Min | 2.5 | - | = | | | = | | - | | | | | | | | | | | | | | | /9 | | = | = | | = | | | | | | | | | | | | | -15 | | | = | = | - | н | = | | | | | | Measured
terminal | | 1QA | 1QB | 1QC | 1QD | 2QA | 2QB | 2QC | 2QD | 10A | 1QB | 1QC | 1QD | 20A | 2QB | 2QC | 2QD | 1A | 1CLR | 18 | 2B | 2CLR | 2A | 1CLR | 1A | 18 | 2CLR | 2A | 2B | 1CLR | 1A | 1B | 2CLR | 2A | 2B | 1CLR | 1A | 1B | 2CLR | 2A | 2B | 1QA | 1QB | 1QC | 1QD | 2QA | 2QB | 2QC | 2QD | Vcc | | | 91 | 2 | 20 | Vcc | 4.5 V | = | = | | н | = | | | = | = | = | | = | = | = | н | = | = | = | = | = | = | 5.5 V | | | = | = | = | = | = | = | | | | = : | = | | | = | = | = | н | = | = | = | | н | | = | | | ٦, | 2 | 19 | 2A | | | | | 1/ | | | | | | | | | | | | | | | | | -18 mA | | | | | 0.4 V | | | | | 0 = 3.4 | 2.7 V | | | | | | 5.5 V | | | | | | 1/ | | | | GND | | | n). | <u>.</u> | 18 | 2CLR | | | | | 2/ | | - | | | | | | 2.0 V | - | - | = | | | | | -18 mA | | | | | 0.4 V | GND | GND | | | | 2.7 V | | | | | | 5.5 V | | | | | | | 2/ | - | | | - | | | lerminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open). | 2 | 17 | 2QA | | | | | -0.4 mA | | | | | | | | 2/ | GND | | | | _ | | | \ ≤ 0.7 V | 2 | 15 | 2B | | | | | | 1/ | 3/ | /4 | | | | | | | | | | | | -18 mA | | | | | | | | 0.4 V | | | | | | 2.7 V | | | | | | 5.5 V | | | | | | 7 | 3/ | 4/ | GND | | | U V; IOW | = | 41 | 2QB | | | | | | -0.4 mA | | | | | | | | 4 mA | GND | | _ | _ | | | .∠ ≤ Z. | 2 | 13 | 2QC | | | | | | - | -0.4 mA | | | | | | | | 4 mA | GND | - | _ | | | nay be r | 0 | 12 | 2QD | | | | | | | | -0.4 mA | | | | | | | | 4 mA | GND | | | | jnated n | . | 10 | GND | GND | | | | н | | |)- | | = | = | = | = | = | - | " | = | = | = | = | = | = | | | | = | | = | | = | = | | | | = : | = | | | - | = | | | = | = | = | = | н | | = | | | ot design | - | 6 | 1QD | | | | -0.4 mA | | | | | | | | 4 mA | GND | | | | | | re omitted | | s (pins r | • | ω | 1QC | | | -0.4 mA | - | | | | | | | 4 mA | GND | | | | | | _ | / _{IC} tests a | | ondition: | , | 7 | 1QB | | -0.4 mA | | | | | | | | 4 mA | GND | | | | | | | _ | 25°C and 7 | | minal co | + | 2 | 1B | | | 3/ | 4/ | | | | | | | | | | | | | | | -18 mA | | | | | | 0.4 V | | | | | | 2.7 V | | | | | | 5.5 V | | | | | 1/ | % | /4 | | | | | | pt $T_c = +1$ | | - ler | , | 4 | 1QA | -0.4 mA | | | | | | | | 2/ | • | GND | | | | | | | | GND | up 1, exce | | 0 | ١ | က | α. | H | | - | | | | | | 2.0 V | = | = | = | | | | | | -18 mA | | | | | 0.4 V | GND | GND | | | | 2.7 V | | | | | | 5.5 \ | | | | | | 2/ | | | = | | | | | 7/ | as subgro | | - | - | 2 | 1A | 1/ | | | | | | | | | | | | | | | | -18 mA | - | | | | | | 0.4 V | | | | | | 2.7 V | | | | | : | 5.5 V | | | | | 1/ | | | | | | | | GND | and limits | | Cases | Е, Т | Case
2 | Test no. | 1 | 2 | 3 | 4 | 2 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | | | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 56 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | Same tests, terminal conditions, and limits as subgroup 1, except $T_C = +125^{\circ}C$ and V_{1C} tests are omitted. Same tests terminal conditions and limits as subtraind a except $T_C = +55^{\circ}C$ and V_{1C} tests are omitted | | | MIL-STD- | 883
method | | 3006 | | = | = | - | | = | | 3007 | - | = | - | - | - | - | | | <u> </u> | 1 | <u> </u> | <u> </u> | 1 | 3009 | = | = | = | = | = | 3010 | = | = | | . | | = : | | | | - | = | 3011 | - | | - | = | = | - | = | 3005 | s, terminal | | | Σ | Symbol | | V _{он} | | | | | | | | Voi | 3 | | | | | | | Vic | 2 | | | | | IL1 | 1112 | 113 | 111 | 7117 | 113 | _
⊞ | I _{H2} | HZ | Ξ. | 윌. | H3 | ¥ | 12 | <u></u> | I.F | IH5 | £
 - | sol | | | | | | | + | ၁၁၂ | Same test: | | | | Subgroup | | 1 | rc = 25°C | | | | | | | <u> </u> | | | | | | | | <u> </u> | | | | | | 1 | | | ļ | | Į | | 1 | | | | | | 1 | | | | Į | | | | | | | | 1 | | 2 8 | See footnotes at end of device type 01. TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0~\text{V}$; low $\leq 0.7~\text{V}$; or open). | MIL-STD- Eastern Case 2 3 4 5 7 8 9 | S S S S S S S S S S | 10B 10C 8 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 | 100 | | | 2 | 1 | 2 L Q I I | SCR 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 2 6 7 4 4 9 = = = = = | 20 20 20 20 E | Measured
terminal | Limits Min Max | Unit | |---
--|---|--|--|---|--|--------------|---|--|--|---|----------------------|----------------|------| | R83 Case 2 3 4 method 2 1 1 1 1 1 1 1 1 1 1 | SSISS AT T T T T T T T T T T T T T T T T T | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1ΔD
1ΔD
1 | | | | | | | 19 A A A B = = = = = = = = = = = = = = = = | 20 / 000 / 10 | Measured | iii H | Chit | | Test no. | 10 10 10 10 10 10 10 10 | 2B 10C | 100
L L H H H H H H H H H H H H H H H H H H | ╎┤┤╎╎╎╎╎╎ | | | | | | ZA A A B = = = = = = = = = = = = = = = = | 20°C
5.0 V | | | | | 1014 50 8/ | Siss at T ₀ = 1 | 7 | H H H H H H H H H H H H H H H H H H H | Qg | | | | | < | < | 2.0 \ | | ⁄бI | | | 55 B " " " " 55 5 5 5 5 5 5 5 5 5 5 5 5 | 8988 at 7 | 28°C and C: | | Q. | · · · · · · · · · · · · = = = = - · · · | | | | | < M = = = = = | = = | | | | | 52 B " " | B | 25°C and To | | | · · · · · · · · · · · · · · · · · · · | | | | | ω = = = = | = | | | | | 53 | SSIS 22 - 8 B A B A B A B A B A B A B A B A B A B | 25°C and T _C : | | | | | | | | = = = = | | | | | | 54 " B " " 55 " " " " 55 5 " " " 1 | Siss at T ₀ = 1 B A B B B A B B B A B B B A B | H H H H H H H H H H H H H H H H H | | Q | | | | +++++++++++++++++++++++++++++++++++++++ | α = = = = = = = = = = = | | = | | | | | 55 " " " " " " " " " " " " " " " " " " | S88 at 7 | | = = = = = = = = = = = = = = = = = = = | | | | | | | - - - | = | | | | | 56 " " " " " " 55 59 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 25°C and To | H H | | | | | | | | = | | | | | 57 | B | 72°C and TC = H | = H H = | | | | | | | | = | | | | | 198
198 198 198 198 198 198 198 198 198 198 198 198 198 198 198 198 198 | Sels at T _C = 1 B A A B B A B B B A B B B B B B B B B | 28°C and T _C : | = - H H H H = | | | | | | | | - | | | | | 69 " " " " " 60 1 1 1 1 1 1 1 1 1 | B B B B B B B B B B B B B B B B B B B | 25°C and T _C = 1 = 1 = 25°C and T _C = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = | = = T T T = = 55°. | QN | | | | | = = = = = = | | - | | | | | 60 | A A B B A A B B B B B B B B B B B B B B | 25°C and T _C = " " " " " " " " " " " " " " " " " " | = - H H H = -55°C. | | - エエ니 | | | | = = = = = | | = | | | | | 61 | Best and The state of | 25° C and To | = -55°C. | OND | 포포니: : · | | | | = = = = = | | - | | | | | 62 " " " " " " " " " " " " " " " " " " " | A B B B Sts at T _C = 11 | 25°C and T _C . | = -55°C. | = = = = QN = | T | | < M = = | | = = = = | | = | | | | | 63 | B = = BSts at T _C = +1, | 25°C and T _C = | = -55°C. | = = = QND | _== | = = = | ω = = | | = = = | = | = | | | | | 64 | " " stsa at T _C = 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | 25°C and T _C = | = -55°C. | = = QN = | = = | = = | | | | = | = | | | | | tests, terminal conditions, and limits as for subgroup 7 te 3003 66 10/ IN GND OUT Fig. 4 67 10/ GND | asts at T _C = +12 | 25°C and T _C = | = -55°C. | = QN = | - | = | - | | - | 4 | - | | | | | tests, terminal conditions, and limits as for subgroup 7 te 3003 66 10/ IN GND OUT Fig. 4 67 10/ GND GND | ests at T _C = +11 | 25°C and T _C = | = -55°C. | GND = | | | | | | В | = | | | | | 3003 66 10/ IN GND OUT Fig. 4 67 10/ GND | <u>z</u> | | Ē | GND = | | | | | | | | | | | | Fig. 4 67 10/
- 68 10/
- 69 10/
- 70 IN
71 IN
73 IN | Z | | Ē | = : | | | | | | | 5.0 V | 1A to 1QA | 25 | MHz | | 68 1 <u>0</u> /
69 1 <u>0</u> /
70 IN
71 T7 IN
73 IN | Z | | į | | | | | TUO | GND | Z | - | 2A to 2QA | 25 | = | | 691 <u>0/</u> IN 70 IN 71 IN 71 IN 73 IN 73 | | | 3 | | | | | | | | - | 1B to 1QD | 12.5 | = | | 20 L3 | | | | | OUT | | Z | | GND | | | 2B to 2QD | 12.5 | | | Z | | OUT | | н | | | | | | | | 1A to 1QC | 2 65 | us | | Z | | | | = | | OUT | | | GND | Z | = | 2A to 2QC | = | = | | 73 | | OUT | | = | | | | | | | = | 1A to 1QC | | = | | | | | | = | | OUT | | | GND | Z | = | 2A to 2QC | = | = | | " 74 GND | Z | | OUT | | | | | | | | = | 1B to 1QD | " 26 | = | | | | | | | OUT | | Z | | GND | | = | 2B to 2QD | | = | | " 76 GND | Z | | OUT | | | | | | | | = | 1B to 1QD | | = | | | | | | _ | OUT | | Z | | GND | | = | 2B to 2QD | = | = | | " 78 <u>11</u> / IN OUT | | | | = | | | | | | | = | 1CLR to 1QA | 44 | = | | 62 | 11/ OI | _ | | | | | | | | | = | 1CLR to 1QB | | - | | - 80 | | OUT | | | | | | | | | = | 1CLR to 1QC | | - | | = = = | = | | OUT | | | | | | - | , | = : | 1CLR to 1QD | | | | 788 | | | | | | i | | 00 | ≥ : | 11/ | | 2CLR to 2QA | | | | | | | | | | 100 | <u>117</u> / | | | | | 2CLR to 2QB | | | | ± 84 | | | | | | OUT | | | = | | = | 2CLR to 2QC | = | | | " 85 | | | | | OUT | | | | | | = | 2CLR to 2QD | " | = | | | | | | | | | | | | | | | 25 | MHz | | FMAX2 | | | | | | | | | | | | ı | 12.5 | MHz | | Same tests and terminal conditions as for subgroup 9, except $T_c = +125$ °C. | oaroup 9. exc | cept $T_c = +1$ | 125°C. | | | | | | | | | | 2 84 | su | | | | | | | | | | | | | | | 18 | = | | | | | | | | | | | | | | 1 | 34 | = | | | | | | | | | | | | | | | 34 | = | | | | | | | | | | | | | | | 292 | = | | Of Theory Of an enable and the state of | 0,000 | T+40 | Co | | | | | | | | | | | | See footnotes on the next page. TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open). 1/ Apply $\begin{bmatrix} --2.0 \text{ V min./5.5 V max. prior to test after clear pulse.} \\ 0.0 \pm 0.2 \text{ V} \end{bmatrix}$ --2.0 V min./5.5 V max. pulse prior to test. \int L $0.0\pm0.2~\mathrm{V}$ Apply 2 pulses prior to test after clear pulse (see $\underline{1}$). 3 $\underline{4}$ Apply 4 pulses prior to test after clear pulse (see $\underline{1}$ /). $\overline{5}/$ For tests 9 and 13, I_{L3} maximum value pulse 4 mA shall be applied to output QA. 6/ IIL limits shall be as follows: | Symbol | Min | Min/Max limits (mA) | nA) | |------------------|---------|---------------------|---------| | | | Circuit | | | | Α | 3 | В | | I _{IL1} | 15/38 | 12/36 | 16/40 | | I _{IL2} | 35/-1.6 | -1.0/-2.4 | 35/-1.6 | | IL3 | 60/-2.4 | -1.3/-3.2 | 60/-2.4 | Only a summary of attributes data is required. / A = 2.4 V min. and B = 0.4 V max. 8 9/ Output voltages shall be either: a. H ≥ 2.5 V and L ≤ 0.4 V when using a high speed double comparator, or b. $H \ge 1.5 \text{ V}$ and $L \le 1.5 \text{ V}$ when using a high speed single comparator. 10/ F_{MAX1} and F_{MAX2} minimum limits specified are the frequency of the input pulse. The output pulse shall be one half the input frequency when measuring QA. The output shall be one fifth of the input frequency when measuring QD. - - 2.0 V min./5.5 V max. pulses to set output high prior to test. 0.0 ± 0.2 V Apply sufficient 11/ TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.7 V; or open). | | | _ | _ | | _ | _ | _ | $\overline{}$ | -1 | _ | | | _ | | _ | _ | _ | _ | _ | | _ | | | _ | $\overline{}$ | | $\overline{}$ | -1 | _ | | _ | _ | _ | | | _ | _ | _ | | | | | _ | _ | |-------------|----------------------|----------|-------|---------|------|-------|------|---------------|------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|-------|-------|-------|---------------|------------------|---------------|------------------|------------------|-------|----------|-------|------------------|------|-----|-----|-----|-----|-----|-----|-----|------|---|-------------------------| | | Unit | | ^ | = = | = | = | = | | = | - | | н | = | = | = | = | = | = | = | | = | 3/ | | - | | hΑ | | = | = | | = | = | | МA | = | = | = | = | н | | | = | | | | | ts | Max | 0.4 | = = | - | | = | | = | | | | | | | | | -1.5 | - | н | = | 3/ | н | | | 20 | 20 | 100 | 100 | 100 | 100 | 400 | 400 | -100 | - | = | = | = | н | | н | 56 | | | | | Limits | Min | | | | | | | | 2.5 | = | н | н | н | | - | - | | | | | 3/ | н | | | | | | | | | | | -15 | | = | = | = | н | | н | | | | | | Measured
terminal | | 1QA | 10B | 100 | 20A | 2QB | 2QC | 2QD | 1QA | 1QB | 1QC | 1QD | 2QA | 2QB | 2QC | 2QD | 1A | 1CLR | 2A | 2CLR | 1CLR | 2CLR | 1A | 2A | 1CLR | 2CLR | 1A | 2A | 1CLR | 2CLR | 1A | 2A | 1QA | 10B | 100 | 1QD | 2QA | 2QB | 2QC | 2QD | Vcc | | | | 14 | 20 | Vcc | 4.5 V | | = | = | = | | = | | | н | = | = | = | = | = | | = | н | = | 5.5 V | ш | | | | | = | | | | = | | н | - | = | = | | н | | н | = | | | | 13 | 19 | 2A | | | | | | | | | | | | 1/ | | = | = | | | -18 mA | | | | | 0.4 V | | | | 2.7 V | | | | 5.5 V | | | | | 1/ | | | | GND | | | | 12 | 18 | 2CLR | | | | 2.0 V | | | = | | | | | 77 | = | - | = | | | Н | -18 mA | | 0.4 V | | GND | | 2.7 V | | | | 5.5 V | | | | | | | 2/ | и | | н | = | | | | 1 | 16 | 2QA | | | | 4 mA | | | | | | | | -400 mA | GND | | | | | | | | 10 11 | 41 | 2QB | | | | | 4 mA | | | | | | | | -400 µA | GND | | | | | | | | 13 | 2QC | | | | | | 4 mA | | | | | | | | -400 µA | GND | | | | | | 8 | 12 | 2QD | | | | | | | 4 mA | | | | | | | | -400 µA | GND | | ö | | | 4 5 6 7 8 9 | 10 | GND | GND | = = | = | | = | | = | | | н | | | | = | = | | = | н | | н | н | | | | | = | = | | | = | | н | | = | = | = | н | | н | = | are omitted | e omitted. | | 9 | 6 | 1QD | | | 4 mA | | | | | | | | -400 µA | GND | | | | | | V _{IC} tests | c tests ar | | 2 | 8 | 1QC | | 4 mA | | | | | | | | -400 µA | GND | | | | | | | 25°C and | 5°C and V | | 4 | 9 | 1QB | | 4 mA | | | | | | | -400 µA | GND | | | | | | | | ept T _c = +1 | ept T _c = -5 | | က | 4 | 1QA | 4 mA | | | | | | | -400 µA | GND | | | | | | | | | oup 1, exce | oup 1, exce | | 2 | က | 1CLR | 2.0 V | | = | | | | | 2/ | | и | и | | | | | | -18 mA | | | 0.4 V | | GND | | 2.7 V | | | | 5.5 V | | | | /7 | = | | - | | | | | 2/ | s as subgro | s as subgro | | - | 2 | 1A | | | | | | | | 1/ | | н | = | | | | | -18 mA | | | | | | 0.4 V | | | | 2.7 V | | | | 5.5 V | | 1/ | | = | = | | | | | GND | , and limit | , and limit | | Cases | Case
2 | Test no. | 1 | 2 8 | 8 | 2 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | Same tests, terminal conditions, and limits as subgroup 1, except $T_C = +125^{\circ}C$ and V_{1C} tests are omitted. | I conditions, | | -ST- | 883
method | | 3007 | | | - | - | = | | 3006 | | = | = | = | | - | - | | | | | 3009 | | | = | 3010 | | = | | | | = | | 3011 | = | = | = | - | = | | = | 3005 | sts, termina | sts, termina | | | Symbol | | Vol | | | | | | | VoH | | | | | | | | ۸ıc | | | | IIII | ILI | 211 | 211 | l _{IH1} | H | I _{IH2} | I _{IH2} | IH4 | <u>∓</u> | HF2 | I _{IH5} | sol | | | | | | | | ၁၁၂ | Same tes | Same tes | | | ubgroup | | _ | := 25°C | 3 | See footnotes at end of device type 02. TABLE III. Group A inspection for device type 02 - Continued. | | | Unit | MHz | MHz | 2 = | н | н | | | : : | | | н | | | : = | = | |---|------------------|----------------------
----------|--------|------------|-------|----|----------|----|----|----|----|----|---------|------------|------|-----|----------|----|----|----|----|----|----|-----|----|----------|-----|-----|-----|-----|------|------|------------------------------------|---|-----------------------|-----------|-----------|-------------------|-------------------|-----------|-----------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------| | • | | ts | Max | 25 | 3 = | н | н | 20 = | | : : | 44 | = | = | | | : = | = | | | | Limits | Min | 25 | 25 | 1 = | | | | | | | = | = | | | | - | | • | | Measured
terminal | 1 | | | | /5 | il | 1A to 1QA | 2A to 2QA | 2A to 2QA | 1A to 1QA | 2A to 2QA | 1A to 1QD | 2A to 2QD | 1A to 1QD | 1CLR to 10A | 1CLR to 1QB | 1CLR to 1QC | 1CLR to 1QD | 2CLR to 2QA | 2CLR to 2QB | 2CLR to 2QD | | | 4 | 20 | Vcc | 5.0 V | | | = | = | = | = | | | = | | : - | = | = | = | = | | | = | = | = | | | | = | - | - | | | = | | 5.0 V | : : | = | | = | | | : : | | = | = | = | | | - | | (ر | 13 | 19 | 2A | ۷. | В | B A | | Α . | В | ٧ | В | Α | В | ۷ ۷ | α < | ζα | Δ Δ | В | A | В | Α | В | A | В | ∢ 1 | м. | < 0 | ۵ ۵ | c m | ν 4 | В | ∢ 0 | 0 60 | 1 | | z | z | | Z | - | Z | Z | - | | | | /Z | | - | | or oper | 12 | 18 | 2CLR | Α. | Κ (| m = | | = | = | = | = | | | | : = | - | | = | = | = | | | = | = | | | | = | = | = | | | 4 | : | | GND | GND | | GND | - 4 | GND | בועט | ֝֝֝֝֝֝֝֝֝֝֝֝֝
֓֞֓ | | | | | | - | | Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open) | | 16 | 2QA | | | | I | ı | 7 | _ | I | Н | ٦ | _
: | | = - | , | ı | I | 7 | 7 | ェ | I | _ | _ : | Ι: | - | | ı | ı | 7 | _ | - | ı | | 100 | TUO | | OUT | - | | | + | | - | | OUT | - | \dagger | | V; low | 10 | 41 | 2QB | | | | = | - | I | = | | | 7 | | | | : = | = | - | 7 | | | | I | | | . |] = | - | - | I | | | 1 | | | | | | - | | | + | | - | | H. | OUT | H | | h ≥ 2.0 | | | | | | | | | | | | | _ | _ | | | | | | | | | | | | | 1 | | | | | | - | | | | | | | - | | | ŧ | | _ | | - | + | | | be hig | თ
 | 13 | 2QC | _ | | + | - | - | - | - | | | エ | _ | | - | - | - | - | 7 | | | - | - | | | | - | - | - | | | | - | | | | | | + | | - | <u></u> | | _ | | | Ċ | + | | d may | ∞ | 12 | 2QD | ,
 | | | = | = | - | = | = | | - | | = | - | = | = | - | Ι | | - | = | = | = : | | | = | = | = | = | - | - | 1 | | _ | | | | _ | 3 | Ę | 3 | | _ | | | _ | OUT | | ignate | 7 | 10 | GND | GND | | | = | = | = | = | = | | = | | : = | - | = | = | = | | | = | = | = | | | | = | = | = | = | | = | ڼ | GND | - - | = | = | = | | . | : : | - | = | = | | | | = | | not des | 9 | 6 | 1QD | ، ب | | | = | = | = | = | | | | | : = | = | = | = | = | I | | | = | = | | | | = | = | = | = : | - - | - | $4 T_{c} = -55$ | | | | | | OUT | ! | 00 | | | | OUT | | | | | s (pins | 2 | 8 | 1QC | Ţ | | | | | = | | | | Н | | : = | | | | = | L | | " | = | = | | | | = | | | | | | =+125°C and T _C = -55°C | | | | | | | | | | | OUT | | | | | | ondition | 4 | 9 | 1QB | ٦. | | | = | = | I | | | н | L | | : - | ı | = | | = | 7 | н | | | I | | | |] = | = | - | I | | | ept T _C = + | | | | | | | | | | OUT | | | | | | | ninal c | က | 4 | 1QA | ١. | | | I | I | 7 | ٦ | I | I | L | _ | _ | = - | | I | I | 7 | 7 | I | I | _ | : ۱ | Ι: | Ι. | _ | ı | I | 7 | _] | - I | up 1, exce | OUT | Ţ | 3 | DUT | | | | | DUT | 3 | | | | | \prod | | Terr | 7 | က | 1CLR | Α. | V | m = | = | = | = | = | | | = | | : = | = | = | = | = | | | = | = | = | | | | = | = | = | = | | 4 | as subgro | GND | CNC | 9 | GND | | GND | | GND | z | : - | - | | | T | Ħ | | | - | 7 | | Α. | В (| я « | | A | В | 4 | В | Α | В | ∢ (| n < | ς α | 1 4 | <u>В</u> | A | В | Α | В | A | В | ∢ 1 | а. | ∢ 0 | 2 4 | c m | < | В | < 0 | 0 60 | nd limits | Z | Z | - | Z | | z | | z | // | 1= | = | | | + | H | | | Cases
A,B,C,D | Case
2 | Test no. | 42 | 43 | 44 | 46 | 47 | 48 | 49 | 20 | 51 | 52 | 53 | 54 | 56 | 52 | 28 | 29 | 09 | 61 | 62 | 63 | 64 | 65 | 99 | 69 | 8 8 | 20 | 71 | 72 | 73 | 75 | conditions, a | F _{MAX1} 3003 76 <u>6</u> / IN GND | / <u>7</u> <u>6</u> / | 79 | 80 | 81 | 85 | 83 | 84 | 3 % | 87 | 88 | 88 | 06 | 91 | 93 | | | MIL-STD- | 883
method | | 3014 | | | = | - | = | = | = | = | = | | : = | - | = | = | = | = | = | = | = | = | | | | - | - | - | - 1 | | - | ts, termina | 3003 | | = | = | | | . | | = | - | = | | | | - | | | | Symbol | | Truth | table | tests | same tes: | F _{MAX1} | F _{MA} x2 | F F | tpHL1 | t _{PHL1} | t _{PLH2} | tpLH2 | tPHL2 | thuis | EJH-F | | | | | \dashv | | | | Subgroup S | | . /7 / | Tc = 25°C | | | | L | | | _ | | _ | | | | | See footnotes at end of device types 02. TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open). | | | Onit | | MHz | us | = | = | | = | | | |--|---------------------------|----------------------|------------------|-------------------|--|---------------|-------------------|-------|-------|--|---| | | | its | Max | | 33 | 33 | 63 | 93 | 99 | | | | | | Limits | Min | 25 | 2 | | | н | = | | | | | | Measured
terminal | | | | | | | | | | | | 14 | 20 | Vcc | | | | | | | | | | ÷ | 13 | 19 | 2A | | | | | | | | | | Initial conditions (pins not designated may be nign ≤ 2.0 V, low ≥ 0.7 V, or open) | 12 | 18 | 2CLR | | | | | | | | | | // 0 | 11 | 16 | 2QA 2CLR | | | | | | | | | | ۷, 5 | 10 | 14 | 2QB | | | | | | | | | | | 6 | 13 | | | | | | | | | | | lay be | 8 | 12 | 2QD | | | | | | | | | | liated | 7 | 10 | GND 2QD 2QC | | | | | | | | | | | 9 | 6 | 1QD | | | | | | | | | | | 2 | 8 | 1QC 1QD | | = 125°C. | | | | | c = -55°C. | | | | 4 | 9 | 1QB | | bgroup 9, except $T_c = 125$ °C. | | | | | ibgroup 10, except T _C = -55°C. | | | <u> </u> | ε | 4 | 1QA | | ıbgroup 9, | | | | | bgroup 10 | | | ב
ב | 2 | 3 | 1CLR | | is as for su | | | | | is as for su | | | | 1 | 2 | 1A | | I condition | | | | | I conditior | | | | Cases
A,B,C,D | Case
2 | Test no. 1A 1CLR | | and termina | | | | | and termina | | | | Cases
MIL-STD- A,B,C,D | 883
method | | | Same tests | | | _ | _ | Same tests and terminal conditions as for su | | | | | Symbol | | F _{MAX1} | t _{PLH1} | t PHL1 | t _{PLH2} | tPHL2 | tPHL3 | | | | | | Subgroup Symbol | | 10 | Tc = 125°C telh1 Same tests and terminal conditions as for sul | | | | | 11 | - | | | | | | | | | | | | | | - - 2.0 V min./5.5 V max. to clear input and then to A input sufficient times prior to test to set the output high.)±0.2 V Apply - - 2.0 V min /5.5 V max. pulse prior to test. 0.0 ± 0.2 V Apply 7 7 I_{IL} limits shall be as follows: 3 | | | _ | Min/Max limits (mA) | : (mA) | | |------|----------|-----------|---------------------|----------|----------| | Test | | | Circuits | | | | | А | Е | В | D | Ь | | 11.1 | 15/38 | 12/36 | 16/40 | 12/36 | 12/36 | | 11.2 | 35/-1.60 | -1.0/-2.4 | 35/-1.60 | 35/-1.60 | 35/-1.60 | A = 2.4 V min. and B = 0.4 V max.4 Output voltages shall be either: 2 a. $H \ge 2.5$ V and L ≤ 0.4 V max when using a high speed checker double comparator, or b. H ≥ 1.5 V and L ≤ 1.5 V when using a high speed checker single comparator. $\mathsf{F}_{\mathsf{MAX1}}$ minimum limit specified is the frequency of the input pulse. The output pulse shall be one half the input frequency. 9 - - 2.0 V min./5.5 V max. pulses to set output high prior to test. $0.0\,\pm\!0.2$ V Apply sufficient 7 TABLE III. Group A inspection for device type 03. | | | Unit | : | > = | - | = | = | = | = | | = | | = | = | = | - | | | = | = | = | = | = | 2/ | = | = | = | = | | μA | | = | = | | | . . | = | = | = | = | MA | = | = | = | = | = | | = | - | | | |--|---------------|----------------------|----------|-----------------|-----------|---------|-----------|---------|---------|---------|-----------------|------|------|----------|---------|------|------|------|-------------|-----------|---------|----------|--------|-------|-------|-------|------|-------|----------|-------|------------------|----------------|----------------|-------|-------|-------|--------|------|------|------|------|--------------|-----|-------|-----|---------|-----|-------|-------|--|---------------| | • | | ts | Max | | | | | | | | 0.4 | н | = | | | | | | ς:
- | | | | | 2/ | = | | | | | 20 | 100 | 20 | 20 | 100 | 50 | 100 | 700 | 300 | 200 | 100 | -100 | 2 = | = | | | | | н | 26 | | | | | | Limits | Min | 2.5 | - | = | = | = | = | | | | | | | | | | | | | | | 2/ | = | = | - | = | | | | | | | | | | | | | -15 | 2 = | = | = | = | = | | | | | | | • | | Measured
terminal | | 10A | 10C | 101 | 20A | 2QB | 2QC | 2QD | 1QA | 1QB | 1QC | 1QD | 2QA | 2QB | 20C | 200 | JOLN
101 | 10LR | 9ST9 | 2CI R | 2CLK | 1CLR | 1CLK | 1ST9 | 2CLR | 2CLK | 2ST9 | 1CLR | 1CLK | 1ST9 | 2CLR | 2CLK | 2ST9 | 1CLR | 1CLK | 8100 | 2CLX | 2ST9 | 10A | 10B | 100 | 10D | 2QA | 2QB | 2QC | 2QD | Vcc | | | | | 16 | 20 | Vcc | 4.5 V | - | | - | = | = | = | - | | = | = | = | - | | | = | = | = | = | - | 5.5 V | = | = | | - | | | | | = | | | | - | = | = | = | = | = | = | = | = | = | | = | - | | | | •
 15 | 19 | 2CLK | | | | 1/ | 3, | /4 | | | | | | | | | | | | | | -18 mA | | | | | 0.4 V | | | | | | 2.7 V | | | | | 55.7 | 2 | | | | | 1/ | اض
ا | 4/ | | GND | | | | | 4 | | 2CLR | | | | 2/ | | | 0.7 V | | | | | 2.0 V | - | | | | | | -18 mA | + | | | | | | | | | | 2.7 V | | | | | 55 / | - | | | | | | 2/ | 1= | | Q | 2/ | | | | or open | 13 | | 2QA 2 | | | | -0.4 mA | | | 0 | | | | \dashv | 4 mA 2 | | | | | | | 7 | | | | | 0 | | | | | | 2 | | | | | 4 | , | | | | | | GND | | | | _ | | | | conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open) | 12 | | 2ST9 2 | | | | 0.7 \ -0. | | _ | 2.0 V | | | | | 0.7 V 4 | | _ | | | | -18 mA | | | | | | | GND | 0.4 V | | | | | | 2.7 V | | | | | 25.5 | | | | | GND | | | 5.5 V | GND | | | | √; low ≤ | | | | | | | Ö | | | 2.0 | | | | | _ | Αſ | | | | | -18 | 2 | | | | | | ତ | 0. | | | | | | 2. | | | | | ď | 5 | | | | _ | _ | H | 5. | Ō | | | | י 2.0 ≤ ר | | | 2QB | | | | | -0.4 mA | | | | | | | | 4 mA | 4 | GND | H | | 4 | | | | be high | 10 | | 2QC | | | | | | -0.4 mA | А | | | | | | | 4 mA | GND | | | | | | ed may | 6 | | 2QD | | | | | | | -0.4 mA | | | | | | | , | 4 mA | GND | | | | | signate | ∞ | 10 | GND | GND
B | = | - | - | = | = | | | u | = | = | = | - | - - | | = | = | = | = | = | = | = | = | - | = | | | | - | = | | | . | = | = | = | = | = | = | = | = | = | = | | = | = | ted. | Ġ. | | s not de | _ | 6 | 1QD | | | -0 4 mA | 5 | | | | | | | 4 mA | GND | | | | | | s are omit | are ormice | | ns (pin | 9 | 8 | 1QC | | -0 4 mA | | | | | | | | 4 mA | GND | | | | | | | d V _{IC} test | VIC tests | | conditio | Ω | 7 | 1QB | | -0.4 IIIA | | | | | | | 4 mA | GND | ! | | | | | | | 125°C an | 35 C allu | | a | 4 | 5 | 1ST9 | 0.7 V | | 207 | 2:0 4 | | | | 0.7 V | н | | = | | | | | | 10 00 | -101114 | | | | GND | 0.4 V | | | | | | 2.7 V | | | | | E 5 1/ | 0.0 | | | GND | = | н | 5.5 V | | | | | GND | 9pt I _C = + | - = 0 1 1de | | | က | 4 | 10A | -0.4 mA | | | | | | | 4 mA | GND | 9 | | | | | | | _ | up 1, exce | ייאס יו לום | | | 7 | 3 | ۲. | /2 | | 7.2.0 | | | | | 2.0 V | | = | = | | | | | 10 00 | AIII OI - | | | | 0.4 V | GND | | | | | 2.7 V | | | | | | 5.5 V | | | | | 2/ |) = | = | GND | | | | | 2/ | as subgro | as sungio | | | - | 2 | 1CLK | 7 | رة
4 | | | | | | | | | | | | | 4 | - IS IIIA | | | | | | 0.4 V | | | | | | 2.7 V | | | | | ; | 2.0 \ | | | | 1 | · /c | /4 | 1 | | | | | GND | and limits | Mu mins | | | Cases
E, F | | Test no. | - 0 | 7 65 | 9 | 2 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | | Ť | 0 0 | 20 | 21 | 22 | 23 | | | 56 | 27 | 28 | | | 31 | 32 | 33 | 34 | | + | à c | 30 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | Same tests, terminal conditions, and limits as subgroup 1, except $T_c = +125^{\circ}C$ and V_{1C} tests are omitted. Same tests terminal conditions, and limits as substruin 1, except $T_c = -55^{\circ}C$ and V_{1C} tests are omitted. | Oliditions, c | | • | MIL-STD- | 883
method | H | 3006 | | _ | _ | = | - | - | 3007 | = | - | | = : | | | : | | | | <u> </u> | | 3009 | = | - | - | = | | 3010 | | | | | | | | - | = | = | 3011 | : = | _ | _ | = | = | _ | = | 3005 | terminal c | (EIIIIIIai v | | | Ξ | Symbol | _ | N _{OH} | | | | | | | V _{OL} | | | | | | | - | ر
اد | | | | | | | 1 - | | 211 | 1111 | | I _{IH2} | l _H | l _H | 래 | Ħ | ¥ | 12 | ¥ : | 4 | £ | - | | | | | | | 1 | lcc . | ame tests | dille tests | | | | Subgroup | | | D = 25°C | | | | | | | | | | | | | 1 | | | | | | | | | 1 | 1 | <u> </u> | | | | | | | | 1 | | | 1 | 1 | | | | | | | | | Z 6. | | See footnotes at end of device type 03. TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; low $\leq 0.7 \text{ V}$; or open). | | | Unit | MHz | MHz | ns | = | = | | . | | = | | = | = | = | = | = | | | = | - | | MH ₂ | 71 10 | 2 = | = | = | = | = | = | | |---|----------|----------------------|----------|---------------|-----------|-----|-----|------|------|---------|-----|---------|-----|----------|----|----|----|----|----|--------|----|----|----|----|----|---|------------|-----------|-------------------|-------------------|--------|------------|--------------|------------------|-------------|------------|--------|--------|------------|--------|--------|--------------|--------------|--------|--------|------------|-----------------|------------|------------------|--|-----|----------|-------|------------------|--| | | | | Max | 44 | 44 | 25 | | | - C | S = | | = | 44 | | = | = | | | = | | 141 | F | 57 | 33 | 3 6 | 32 | 14 | 26 | 53 | | | | | Limits | Min | ⁄8I | 25 | 25 | 2 | = | = | | | | = | | = | = | = | | = | | | = | = | | 25 | 3 0 | 1 = | - | = | = | | = | | | | | Measured
terminal | CLK to 1QA | to 2QA | ST9 to 1QA | to 2QA | to 1QA | CLK to 2QA | to 1QA | CLK to 2QA | 2000 | CLK 10 20C | to 2QC | to 1QA | CLR to 1QB | to 1QC | to 1QD | to 20A | to 2QB | 10 ZQC | 10 2QD | ST9 to 20B | 2 2 | | 1 | | | <u> </u> | | | | | | | | Т | > | 1 | 1 | 1 | I | | | 1 | 1 | I | | | | | | | | | 1 | | | | | | CLK | ST9 | ST9 | CK | SE | CLK | 2
2
2
3 | ב
ב
ב | 2 2 | S
K | CLR | CLR | CLR | CLR | CLR | CLR | 2 5 | Z E | S LS | 5 | | | | | | | | | | - | 2 | 20 | N | 5.0 V | = | = | - | = | = | = | = | = | - | = | = | = | - | = | | | = | = | = | = | = | | 5.0 V | = | = | = | - | | · | | = | = | = | = | = | = | = | • | | = | - | = | | | | | | | | | | | , | 2 | 19 | 2CLK | ∢ ι | א < | ζα | ۵ ⊲ | ς α | Δ 4 | α. | Δ Δ | (M | Δ | a | 4 | В | A | В | Α | В | A | В | 4 | - | | | | Z | | | | Z | - | Z | 2 | ≧ | Z | | | | | 10/ | | = | | 10/ | Ž | | | | | | | | | | en). | <u> </u> | 18 | 2CLR | ∢ • | ∢ 0 | = ۵ | = | = | = | = | = | = | = | | = | = | = | = | | | = | = | ٧ | В | В | | | GND | | 2/ | | GND | 9 | GND | CINC | GIND | GND | | | | | ∠ : | | = | | GND | 5 | | | | | | | | | | ; or ope | 2 | 17 | 2QA | ,
, | | п | Ξ Ξ | = - | | ıΠ | = 1 | | - | т | I | Γ | 7 | Н | Н | Г | L | I | L | L | Н | | | OUT | | OUT | | OUT | H | OUT | | | | | | | | OUT | | | | | | | | | | | | | | | l erminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open). | 7 | 15 | 2ST9 | В= | | = | = | = | = | = | = | | = | = | = | = | = | = | | | | = | = | | Α | | | GND | | z | | GND | | GND | CINC | GIND | GND | | | | | GND | | = | | Z | 2 | | | | | | | | | | , V; | = | 41 | 2QB | _ - | : = | - | = | ı | = | | = | | = | = | = | I | - | | = | 7 | = | = | = | | | | | | | | | | | | | | | | | | | ŀ | OUT | | | П | 5 | | | | | | | | | | gn ≥ 2.0 | 2 | 13 | 2QC | | : = | - | _ | - | = | - | - | ī | : = | - | - | _ | _ | | | 7 | - | = | _ | | | | | | | | | | | | E | 100 | DUT | | | | | | E | - | | | | | | | | | | | | | y be hig | | 12 | 2QD 2 | | | | | | | | | | | | - | _ | | | | I | | _ | 7 | | н | | | | | | | | - | | (|) | 0 | | | | | | | + | 5 | | | | | | | | | | | | ted ma | | | + | H | | | l | l | l | | Ĺ | | | | | | | | | | _ | | _ | _ | | | 9 | | _ | | | | | | l | | | | | | | | 1 | 5 | T | | | | | | | | | | | | lesigna | | 10 | + | GND | | _ | _ | - | Ī | - | - | - | - | | _ | | | | | _ | - | - | - | - | | | GND | - | - | - | | | | | _ | - | - | | | | -
- | | 1 | - | - | | | | | | | | | | | | s not c | | 6 | 1QD | | - | - | - | = | = | = | = | - | - | - | = | - | - | - | | I | = | = | _ | _ | エ | = -55°C. | | | | | | | | + | | 1 | | | | _ | DO_ | | 1 | | | | | | 1050 | 25. | | | | | ς.
C. | | nos (pir | D | ∞ | 100 | H | = | = | - | = | = | = | = | Ι | = | = | = | = | - | = | | 7 | = | = | = | = | = | 25° C and T_{c} = | | | | | | | | 5 | 3 | Ċ |) | | | OUT | | | - | | | | | | -
-
-
- | + = O = 1 | | | | | $T_{\rm C} = -5$ | | condition | ר | 7 | 1QB | H | = | = | = | I | = | = | = | | = | = | = | I | - | = | = | ٦ | = | = | = | = | = | c = +125° | | | | | | | | | | | | | OUT | | | | | | Ē | 00 | | | 200 | a, excel | | | | | except | | rminal | t | 2 | 1ST9 | а = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | | | = | = | = | | Α | tests at T | GND | | Z | | GND | 9 | GND | | GIND | GND | 5 | GND | = | = | = | | | | 2 | ≧ | | | 9 | dnoabar | | | | | aroup 10 | | ١ | 2 | 4 | 1QA | _ : | = | I | = = | - | | ıI | = = | - | - | ı | I | ٦ | 7 | I | I | ٦ | _ | I | _ | ٦ | I | bgroup 7 | OUT | | OUT | | OUT | į | | | | | | OUT | | | | | | | | | | | 10,00 | as ior si | | | | | for sub | | c | 4 | က | 1CLR | Α, | ∢ 0 | Δ= | = | = | = | = | = | = | = | | = | = | = | = | | | = | = | A | В | В | as for su | GND | | 2/ | | GND | | GND | | GIND | GND | 5 | Z | | = | = | | | | | GIND | | | od citi Pod | nalitions | | | | | limits as | | • | - | 2 | 1CLK | ∢ (| ם < | ζ α | ۵ ۵ | ς α | Δ Φ | | Δ Δ | (M | ۷ | <u>а</u> | A | В | Α | В | Α | В | A | В | Α | - | = | and limits | Z | | | | Z | - | Z | 2 | 2 | Z | | 10/ | | = | = | | | | /01 |)
I | | | وامان | ninal co | | | | | ins and | | | E, F | Case
2 | est no. | 20 <u>7</u> / | 51 | 22 | 3 2 | t 18 | 3 25 | 24 | 200 | 20 62 | 9 | 61 | 62 | 63 | 64 | 92 | 99 | 29 | 89 | 69 | 20 | 71 | 72 | Same tests, terminal conditions, and limits
as for subgroup 7 tests at $T_{\rm C}$ = +1 | 73 9/ | 74 9/ | 75 | 9/ | 11 | 78 | 62 | 80 | 0 0 | 83 | 84 | 82 | 98 | 87 | 88 | 89 | 8 8 | - G | 38 88 | 25 25 | 5 | | 4 600 | Same tests and terminal conditions as for subgroup 9, except $1_{c} = +1_{c}$ 5.0. | | | | | Same tests, terminal conditions and limits as for subgroup 10, except $T_c = -55^{\circ}C$ | | | MIL-STD- | 883
method | <u> </u> | 3014 | | | | _ | | <u></u> | | <u></u> | _ | _ | _ | _ | _ | _ | | Ш
- | | | | | | erminal a | 03 | Fig. 5 | _ | - | - | | | | - | | | - | | _ | = | | | - | | | | | 0+00+ 0m | sisei eur | | | | | termina | | | MIL- | | | _ | | 210 | ne tests, t | 1X1 3C | 4 | Ŧ. | 至 | Ŧ | Ξ | <u>[</u>] | 17 | 오 | 건 : | 12 | 1.3 | | | | | | | | | 1.4 | AX1 | | | Ţ. | 길 : | 1 2 | L4 | ne tests, | | F | | up Symbol | | Truth | 5°C FMAX1 | t _{PLH4} | t _{PLH4} | tPLH1 | ₽. | tPHL1 | ±. | tPLH2 | tell2 | ţ. | tpHL3 | | | | | | | - | TPHL4 | | T WAX1 | _ | d , | PHL | tell 2 | tPHL3 | t _{PHL} | San | | | | Subgroup | | 7 - | 1c = 25°C | òι | 8 | 6 | Tc = 25 | | | | | | | | | | | | | | | | | | | 10 | Tr = 125°C | 2 | | | | | | 11 | See footnotes on next page. 1/ Apply -2.0 V min./5.5 V max. prior to test after clear pulse. $0.0 \pm 0.2 \text{ V}$ 2/ Apply -2.0 V min./5.5 V max. pulse prior to test. $0.0 \pm 0.2 \text{ V}$ - 3/ Apply 2 pulses after clear pulse (see 1/). - $\underline{4}$ / Apply 4 pulses after clear pulse (see $\underline{1}$ /). - 5/ I_{IL} limits shall be as follows: | Symbol | Min | /Max limits (ı | mA) | |------------------------|---------|----------------|---------| | | | Circuit | | | | Α | Е | В | | I _{IL1} (CLR) | 15/38 | 135/37 | 16/40 | | I _{IL2} (ST9) | 16/40 | 135/37 | 16/40 | | I _{IL3} | 35/-1.6 | -1.0/-2.4 | 35/-1.6 | - 6/ Only a summary of attributes data is required. - 7/ A = 2.4 V min. and B = 0.4 V max. - 8/ Output voltages shall be either: - a. $\,H \geq 2.5\,\,\text{V}$ and $L \leq 0.4\,\,\text{V}$ when using a high speed double comparator, or - b. $H \ge 1.5 \text{ V}$ and $L \le 1.5 \text{ V}$ when using a high speed single comparator. - $\underline{9}$ / F_{MAX1} minimum limits specified is the frequency of the input pulse. The output pulse shall be one half the input frequency. $\underline{10}/$ Apply sufficient $$--2.0\ V$$ min./5.5 V max. pulses to set output high prior to test. $0.0\pm0.2\ V$ #### 5. PACKAGING 5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity. #### 6. NOTES (This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.) - 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment. - 6.2 Acquisition requirements. Acquisition documents should specify the following: - a. Title, number, and date of the specification. - b. Complete part number (see 1.2). - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable. - d. Requirements for certificate of compliance, if applicable. - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable. - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable. - g. Requirements for product assurance options. - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government. - I. Requirements for "JAN" marking. - 6.3 <u>Superseding information.</u> The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists. - 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199. 6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows: | F _{MAX} | | |------------------|--| | GND | Ground zero voltage potential | | I _{IN} | Current flowing into an input terminal | | V _{IC} | Input clamp voltage | | V _{IN} | Voltage level at an input terminal | - 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number. - 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535. | Military device | Generic-industry | |-----------------|------------------| | type | type | | 01 | 54LS390 | | 02 | 54LS393 | | 03 | 54LS490 | 6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits, which form a part of this specification, are designated with an "X" as shown in table IV herein. TABLE IV. Manufacturer's designator. | | Manufacturer | | | | | |--------|--------------|-----------------|-----------|---------------|---------------| | Device | Texas | Signetics Corp. | Motorola | Fairchild Co. | National | | type | Instruments | | Inc. | | Semiconductor | | | Circuit A | Circuit B | Circuit D | Circuit E | Circuit F | | 01 | Х | Х | | Х | | | 02 | X | X | Х | X | X | | 03 | Х | Х | | Х | | 6.9 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes. Custodians: Preparing activity: DLA - CC Army - CR Navy - EC Air Force - 11 (Project 5962-1977) DLA - CC Review activities: Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99 # STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL # INSTRUCTIONS - 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given. - 2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity. - 3. The preparing activity must provide a reply within 30 days from receipt of the form. NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements. | contractual requirements. | | | | | |--|--|--|--|--| | I RECOMMEND A CHANGE: | DOCUMENT NUMBER MIL-M-38510/327B | 2. DOCUMENT DATE (YYYYMMDD)
2003-09-15 | | | | 3. DOCUMENT TITLE MICROCIRCUITS, DIGITAL, BIPO | LAR, LOW-POWER SCHOTTKY TTL, (| COUNTERS, MONOLITHIC SILICON | | | | 4. NATURE OF CHANGE (Identify paragrap | oh number and include proposed rewrite, if po | ossible. Attach extra sheets as needed.) | | | | 5. REASON FOR RECOMMENDATION | | | | | | 6.
SUBMITTER
a. NAME (Last, First Middle Initial) | b. ORGANIZATION | N | | | | c. ADDRESS (Include Zip Code) | d. TELEPHONE (In (1) Commercial (2) DSN (If applicable) | 7. DATE SUBMITTED (YYYYMMDD) | | | | 8. PREPARING ACTIVITY | | · | | | | NAME Defense Supply Center, Columbus | b. TELEPHONE (In (1) Commercial 6 | | | | | c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000 | Defense Standar
8725 John J. Kin
Fort Belvoir, Virgi | IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT: Defense Standardization Program Office (DLSC-LM) 8725 John J. Kingman Road, Suite 2533 Fort Belvoir, Virginia 22060-6221 Telephone (703)767-6888 DSN 427-6888 | | |